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Introduction
In this paper, we consider a general regularized ERM based on a convex (but

possible nonsmooth) PLQ loss with linear constraints:

where  is the covariate vector for the -th observation,  is an

unknown coefficient vector,  and  are posed as linear

inequality constraints for , and  is a convex piecewise linear-quadratic

loss (PLQ) loss function.
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β L (⋅) ≥i 0

Table 1. Overview of existing algorithms in solving (1).

This proposed ReHLine is based on the coordinate descent (CD), drawing

inspiration from Liblinear. Its motivation is to utilize the linear structure in the

KKT conditions, and simultaneously update primal and dual variables,

considerably reducing the computational complexity for CD updates. For

illustration, we only demo one dual variable, see the full details in the paper.

Canonical CD updates. By excluding the terms unrelated to :λli

Contribution. Compared with existing algorithms, the proposed ReHLine

solver has four appealing "linear properties":

It applies to any convex piecewise linear-quadratic loss function

(potential for non-smoothness included).

In addition, it supports linear constraints on the parameter vector.

The optimization algorithm has a provable linear convergence rate.

The per-iteration computation is linear in the sample size.

The ReHLine Decomposition
Definition 1. A function  is composite ReLU-ReHU, if there exist 

and  such that

where , and  defined in (2).

L(z) u,v ∈ RL

τ , s, t ∈ RH

L(z) = ReLU(u z +
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∑
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l v ) +l ReHU (s z +
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∑
H

τh h t ), (3)h

ReLU(z) = z+ ReHU (z)τh

Theorem 1. A loss function  is convex PLQ iff it is composite ReLU-ReHU.L

Table 2. Some widely used composite ReHLine losses as in (3).

Taken together, (1) can be rewritten as:

Algorithm and Results

where  and  are

the ReLU-ReHU loss parameters, as illustrated in Table 2.

The Lagrangian dual, which is a box-QP, is presented in Theorem 2 of our

paper, which is derived using the Karush-Kuhn-Tucker (KKT) condition:

U = (u ),V =li (v ) ∈li RL×n S = (s ),T =hi (t ), T =hi (τ ) ∈hi RH×n

updating one  value requires  of computation. Adding

all variables together, the canonical CD update rule for one full cycle has a

computational complexity of .

λli O(K + nd+ nL+ nH)

O((K + nd+ nL+ nH)(K + nL+ nH))

ReHLine updates significantly reduces the computational complexity of

canonical CD by updating  according to the KKT condition (9) after each

update of a dual variable.

β

updating one  value only requires  of computation. Adding all variables

together, the ReHLine update rule for one full cycle has a computational

complexity of .

λli O(d)

O((K + nL+ nH)d)

Theorem 2. Let  be a sequence of iterates generated by ReHLine. Then the

dual objective converges at least linearly to that of .

μ(q)

μ∗

Table 5. The running times of SOTA solvers on ML tasks using the Benchopt. “✗” indicates cases where the solver produced an invalid solution or exceeded the allotted time limit (“objective” for

failure on objective function, and “both” for both objective and feasibility). Speed-up refers to the speed-up in running time achieved by ReHLine.


