

ReHLine: Regularized Composite ReLU-ReHU Loss Minimization with Linear Computation and Linear Convergence

Introduction

In this paper, we consider a general regularized ERM based on a convex (but possible **nonsmooth**) PLQ loss with linear **constraints**:

 $\min_{eta \in \mathbb{R}^d} \sum_{i=1}^n L_i(\mathbf{x}_i^{\intercal}eta) + rac{1}{2} \|eta\|_2^2, \quad ext{ s.t. } \mathbf{A}eta + \mathbf{b} \geq \mathbf{0}, \quad (1)$

where $\mathbf{x}_i \in \mathbb{R}^d$ is the covariate vector for the *i*-th observation, $\beta \in \mathbb{R}^d$ is an unknown coefficient vector, $\mathbf{A} \in \mathbb{R}^{K imes d}$ and $\mathbf{b} \in \mathbb{R}^{K}$ are posed as linear inequality constraints for β , and $L_i(\cdot) \geq 0$ is a convex piecewise linear-quadratic loss (PLQ) loss function.

Table 1. Overview of existing algorithms in solving (1).

Algorithm	COMPLEXITY (PER ITERATION)	#ITERATION	COMPLEXITY (TOTAL)
P-GD	$\mathcal{O}(n)$	$\mathcal{O}(\varepsilon^{-1})$ [6]	$\mathcal{O}(n\varepsilon^{-1})$
CD	$\mathcal{O}(n^2)$	$\mathcal{O}(\log(\varepsilon^{-1}))$ [31]	$\mathcal{O}(n^2 \log(\varepsilon^{-1}))$
IPM	$\mathcal{O}(n^2)$	$\mathcal{O}(\log(\varepsilon^{-1}))$ [18]	$\mathcal{O}(n^2 \log(\varepsilon^{-1}))$
ADMM	$\mathcal{O}(n^2)$	$o(\varepsilon^{-1})$ [9, 20]	$o(n^2 \varepsilon^{-1})$
SDCA	$\mathcal{O}(n)$	$\mathcal{O}(\varepsilon^{-1})$ [39]	$\mathcal{O}(n\varepsilon^{-1})$
ReHLine (ours)	$\mathcal{O}(n)$	$\mathcal{O}(\log(\varepsilon^{-1}))$	$\mathcal{O}(n\log(\varepsilon^{-1}))$

Contribution. Compared with existing algorithms, the proposed ReHLine solver has four appealing "*linear properties*":

- It applies to any convex piecewise linear-quadratic loss function (potential for non-smoothness included).
- In addition, it supports linear constraints on the parameter vector.
- The optimization algorithm has a provable linear convergence rate.
- The per-iteration computation is linear in the sample size.

The ReHLine Decomposition

and $au, \mathbf{s}, \mathbf{t} \in \mathbb{R}^{H}$ such that

$$L(z) = \sum_{l=1}^L \operatorname{ReLU}(u_l z + v_l) + \sum_{h=1}^H \operatorname{ReHU}_{ au_h}(s_h z + t_h), \quad (3)$$

where $\operatorname{ReLU}(z) = z_+$, and $\operatorname{ReHU}_{\tau_h}(z)$ defined in (2).

Theorem 1. A loss function *L* is convex PLQ iff it is composite ReLU-ReHU.

Table 2. Some widely used composite ReHLine losses as in (3).

Problem	Loss $(L_i(z_i))$	Сом
SVM	$\overline{c_i(1-y_iz_i)_+}$	$u_{1i} =$
s-SVM	$c_i \operatorname{ReHU}_1(-(y_i z_i - 1))$	$s_{1i} =$
SVM^2	$c_i((1-y_iz_i)_+)^2$	$s_{1i} =$
LAD	$c_i ert y_i - z_i ert$	u_{1i} =
SVR	$c_i(y_i - z_i - \varepsilon)_+$	u_{1i} =
QR	$c_i ho_\kappa (y_i - z_i)$	u_{1i} =

Taken together, (1) can be rewritten as:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \sum_{l=1}^{L} \operatorname{ReLU}(u_{li} \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\beta} + v_{li}) + \sum_{i=1}^{n} \sum_{h=1}^{H} \operatorname{ReHU}_{\tau_{hi}}(s_{hi} \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\beta} + t_{hi}) + \frac{1}{2} \|\boldsymbol{\beta}\|_{2}^{2},$$
s.t. $\mathbf{A}\boldsymbol{\beta} + \mathbf{b} \ge \mathbf{0},$
(4)

where $\mathbf{U}=(u_{li}), \mathbf{V}=(v_{li})\in \mathbb{R}^{L imes n}$ and $\mathbf{S}=(s_{hi}), \mathbf{T}=(t_{hi}), \mathbf{T}=(au_{hi})\in \mathbb{R}^{H imes n}$ are the ReLU-ReHU loss parameters, as illustrated in Table 2.

The Lagrangian dual, which is a box-QP, is presented in Theorem 2 of our

paper, which is derived using the Karush-Kuhn-Tucker (KKT) condition:

$$\widehat{\boldsymbol{\beta}} = \sum_{k=1}^{K} \widehat{\xi}_{k} \mathbf{a}_{k} - \sum_{i=1}^{n} \mathbf{x}_{i} \left(\sum_{l=1}^{L} \widehat{\lambda}_{li} u_{li} + \sum_{h=1}^{H} \widehat{\gamma}_{hi} s_{hi} \right) = \mathbf{A}^{\mathsf{T}} \widehat{\boldsymbol{\xi}} - \overline{\mathbf{U}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Lambda}}) - \overline{\mathbf{S}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Gamma}}).$$

Table 5. The running times of SOTA solvers on ML tasks using the Benchopt. "X" indicates cases where the solver produced an invalid solution or exceeded the allotted time limit ("objective" for failure on objective function, and "both" for both objective and feasibility). **Speed-up** refers to the speed-up in running time achieved by **ReHLine**.

TASK	DATAS	ET	ECOS	MOSEK	SCS	DCCP	REHLINE	TASK	DATASET	ECOS	MOSE	K SCS	HQREG	REHLINE	TASK	DATASET	SAGA	SAG	SDCA	SVRG	
FairSVM	SPF (× Philipp Sylva-p Creditc	1e-4) ine (×1e-2) prior (×1e-2) eard (×1e-1)	★ 1550(±0.6) ★ 175(±0.2)	x 87.4(±0.2) x 64.2(±0.1)	× 130(±42) × 161(±405)	× 1137(±9.2) × ×	$\begin{array}{c} 4.25(\pm 0.5)\\ 1.03(\pm 0.2)\\ 0.47(\pm 0.1)\\ 0.64(\pm 0.2)\end{array}$	RidgeHu	ber Liver-disorders (\times 1e Kin8nm (\times 1e-3) House-8L (\times 1e-3) Topo-2-1 (\times 1e-2)	-4) × × 2620(±10	× 925(± 267(±	2) X 1) 213(±2)	$\begin{array}{c} 4.90(\pm 0.00)\\ 1.58(\pm 0.21)\\ 2.42(\pm 0.34)\\ 3.53(\pm 0.67)\end{array}$	$\begin{array}{c} 1.40(\pm 0.20)\\ 2.04(\pm 0.30)\\ 0.80(\pm 0.21)\\ 1.78(\pm 0.32)\\ \end{array}$	sSVM	SPF (×1e-4) Philippine (×1e-2) Sylva-prior (×1e-2) Creditcard (×1e-2)	$\begin{array}{c} 39.9(\pm 4.6)\\ 24.3(\pm 27.8)\\ 3.37(\pm 9.81)\\ 10.4(\pm 1.4)\end{array}$	$\begin{array}{c} 28.3(\pm 5.0)\\ 5.53(\pm 9.8)\\ 3.00(\pm 0.56)\\ 15.0(\pm 2.0)\end{array}$	$\begin{array}{c} 15.0(\pm 2.4)\\ 1.47(\pm 0.19)\\ 1.57(\pm 0.23)\\ 14.0(\pm 1.9)\end{array}$	$\begin{array}{c} 41.4(\pm 3.9)\\ 15.8(\pm 6.8)\\ 3.40(\pm 0.84)\\ 11.2(\pm 1.4)\end{array}$	(
	Fail/Su Speed-	cceed up (on Creditcard)	<mark>2/2</mark> 273x	<mark>2/2</mark> 100x	<mark>2/</mark> 2 252x	3/1 ∞	<mark>0/</mark> 4 _		Fail/Succeed	× 4/1	$\frac{2384(\pm 4)}{2/3}$	(33) × 4/1	$\frac{12.5(\pm 1.8)}{0/5}$	5.28(±1.31) 0/5		Fail/Succeed Speed-up (on Creditcard)	<mark>0</mark> /4 1.6x	0/4 2.3x	0/4 2.2x	0/4 1.7x	
	4.017		ECOS	MOGE	V 0.00	DrII			Speed-up (on BT)	x	4328	x	2.37X	_	_						
	ASK IssticOR	$\frac{\text{DATASET}}{\text{ID}(\times 1e^{4})}$	ECOS	MOSE 106(+	$\frac{K}{7} = \frac{34}{9(\pm 25)}$	$\frac{\text{KEH}}{0} - 2.60(-1)$	LINE 	TASK	DATASET	ECOS	MOSEK	SCS	LIBLINEAR	REHLINE	1						
EI	lasticQK	LD (×1e-4) Kin8nm (×1e-3) House-8L (×1e-3) Topo-2-1 (×1e-2) BT (×1e-0)) 887(±16 4752(±20 7079(±25	$\begin{array}{c} 100(\pm \\ 92.0(\pm \\ 1) & 277(\pm \\ 15) & \bigstar \\ 17) & \bigstar \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00(2) (5) 4.12(2) 7.21(2) 3.04(2) 2.49(2)	=0.30) =0.95) =1.99) =0.49) =0.56)	SVM	SPF (×1e-4) Philippine (×1e-2) Sylva-prior (×1e-3) Creditcard (×1e-2)	× 1653(±41) × 2111(±804)	$372(\pm 1)$ $86.5(\pm 0.2)$ $731(\pm 2)$ X	$\begin{array}{c} 237(\pm 27)\\ 153(\pm 146)\\ 843(\pm 1006)\\ 1731(\pm 4510)\end{array}$	$\begin{array}{c} 12.7(\pm 0.1) \\ 1.80(\pm 0.02) \\ 16.0(\pm 0.6) \\ 23.1(\pm 2.5) \end{array}$	$\begin{array}{c} 3.90(\pm 0.10)\\ 0.82(\pm 0.02)\\ 4.08(\pm 0.84)\\ 5.08(\pm 1.45)\end{array}$							
		Fail/Succeed Speed-up (on BT)	3/2 2843x	2/3 ∞	3/2 ∞	0/	5		Fail/Succeed Speed-up (on Creditcard)	2/2 415x	1/3 ∞	<mark>0</mark> /4 340x	0/4 4.5x	0/4	A UNY		fine				

Definition 1. A function L(z) is composite ReLU-ReHU, if there exist $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{L}$

1POSITE RELU-REHU PARAMETERS $=-c_iy_i, v_{1i}=c_i$ $=-\sqrt{c_i}y_i, t_{1i}=\sqrt{c_i}, au=\sqrt{c_i}$ $=-\sqrt{2c_i}y_i,\,t_{1i}=\sqrt{2c_i},\, au=\infty$ $= c_i, v_{1i} = -c_i y_i, u_{2i} = -c_i, v_{2i} = c_i y_i$ $= c_i, v_{1i} = -(y_i + \varepsilon), u_{2i} = -c_i, v_{2i} = y_i - \varepsilon$ $= -c_i \kappa, \, v_{1i} = \kappa c_i y_i, \, u_{2i} = c_i (1 - \kappa), \, v_{2i} = -c_i (1 - \kappa) y_i$

Ben Dai* (CUHK) Yixuan Qiu* (SUFE)

Algorithm and Results

This proposed **ReHLine** is based on the coordinate descent (CD), drawing inspiration from *Liblinear*. Its motivation is to utilize the **linear structure** in the KKT conditions, and simultaneously update primal and dual variables, considerably reducing the computational complexity for CD updates. For illustration, we only demo one dual variable, see the full details in the paper.

Canonical CD updates. By excluding the terms unrelated to λ_{li} :

 $\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\frac{u_{li} \mathbf{x}_{i}^{\mathsf{T}} \left(\sum_{k=1}^{K} \xi_{k} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{h',i'} \gamma_{h'i'} s_{h'i'} \mathbf{x}_{i'} \right) + v_{li}}{u_{li}^{2} \|\mathbf{x}_{i}\|_{2}^{2}} \right),$ updating one λ_{li} value requires $\mathcal{O}(K + nd + nL + nH)$ of computation. Adding all variables together, the canonical CD update rule for one full cycle has a computational complexity of $\mathcal{O}((K + nd + nL + nH)(K + nL + nH))$. **ReHLine updates** significantly reduces the computational complexity of

canonical CD by updating β according to the KKT condition (9) after each update of a dual variable.

$$\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\lambda_{li}^{\text{old}} - \frac{\nabla_{\lambda_{li}} \mathcal{L}(\lambda^{\text{old}})}{u_{li}^2 \|\mathbf{x}_i\|_2^2} \right) = \mathcal{P}_{[0,1]} \left(\lambda_{li}^{\text{old}} + \frac{u_{li} \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{\text{old}} + v_{li}}{u_{li}^2 \|\mathbf{x}_i\|_2^2} \right)$$

Accordingly, the primal variable β is updated as

$$\boldsymbol{\beta}^{\text{new}} = \boldsymbol{\beta}^{\text{old}} - (\lambda_{li}^{\text{new}} - \lambda_{li}^{\text{old}}) u_{li} \mathbf{x}_i,$$

updating one λ_{li} value only requires $\mathcal{O}(d)$ of computation. Adding all variables together, the ReHLine update rule for one full cycle has a computational complexity of $\mathcal{O}ig((K+nL+nH)dig)$

Theorem 2. Let $\mu^{(q)}$ be a sequence of iterates generated by ReHLine. Then the dual objective converges at least linearly to that of μ^* .

